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Motivated by observations of Williamson & Roshko of the wake of an oscillating 
cylinder with three vortices per cycle, and by the analyses of Rott and Aref of the 
motion of three vortices with vanishing net circulation on the unbounded plane, the 
integrable problem of three interacting, periodic vortex rows is solved. The problem is 
‘mapped’ onto a problem of advection of a passive particle by a certain set of fixed 
point vortices. The results of this mapped problem are then re-interpreted in terms of 
the motion of the vortices in the original problem. A rather complicated structure of 
the solution space emerges with a surprisingly large number of regimes of motion, some 
of them somewhat counter-intuitive. Representative cases are analysed in detail, and 
a general procedure is indicated for all cases. We also trace the bifurcations of the 
solutions with changing linear momentum of the system. For rational ratios of the 
vortex circulations all motions are periodic. For irrational ratios this is no longer true. 
The point vortex results are compared to the aforementioned wake experiments and 
appear to shed light on the experimental observations. Many additional possibilities 
for the wake dynamics are suggested by the analysis. 

1. Introduction 
Several investigators have explored the wake patterns formed by an oscillating 

cylinder in a uniform stream. In addition to the familiar Kkrrnan vortex street with two 
vortices per shedding cycle, many complex patterns have been observed, including a 
mode in which the far-wake region contains three vortices from each shedding cycle. 
From a large body of literature we mention the studies by Honji & Taneda (1968), 
Griffin & Ramberg (1974), and Williamson & Roshko (1988), who found that 
oscillation of a cylinder normal to a uniform stream can produce three-vortex patterns. 
Williamson & Roshko (1988) provide a parameter range over which they found this 
mode to occur. Griffin & Rambert (1976), Couder & Basdevant (1986), and Ongoren 
& Rockwell (1988) also observed the three-vortex pattern, but for a cylinder oscillating 
in-line with the uniform stream. 

By analogy to the well-known analysis by von Karman-f these observations suggest 

t The question arises as to whether a three-dimensional problem can be accurately (and 
adequately) represented by a two-dimensional model. In this regard we are on more solid ground than 
von Karman, for it is well known that a stationary cylinder can shed vortex filaments obliquely, 
making three-dimensional effects important. However, in the case of an oscillating cylinder, 
Koopman (1967) and Griffin, Skop & Koopman (1973) have shown that for sufficiently large 
amplitudes of oscillation (3 10 % of the cylinder diameter) and appropriate Reynolds numbers the 
wake becomes essentially two-dimensional. 
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the following model problem. Consider the (x,y)-plane partitioned into an infinite 
sequence of strips perpendicular to the x-axis. Let the width of each strip be L. 
Consider a system of three point vortices placed in one of these strips and periodically 
continued to all the other strips. Thus, each ‘base’ vortex corresponds to an infinite 
row of identical, uniformly spaced vortices, separated one from the next by a distance 
L. Since the three vortices are to arise from one cycle of a shedding process, we assume 
in the model that their circulations sum to zero. (This assumption is supported by the 
observations of Williamson & Roshko 1988.) Of course, the perfect spatial periodicity 
that we are imposing in the model is not entirely realistic. The experimental situation 
does not have upstream-downstream symmetry. Nor, to be entirely precise, is an exact 
periodicity downstream of the cylinder to be expected owing to the influence of the 
gradually decaying wake ‘mean flow’. Similar objections can be raised in the case of 
von Karman’s model of the vortex street. However, the history of the subject amply 
shows that his consideration of a point vortex model was worthwhile. We feel that 
similar comments will be made for the N = 3 case once the results of the analysis are 
assimilated. The problem, then, is to elucidate the motion of this three-vortex problem 
with the boundary conditions of the periodic strip. As discussed in greater detail below, 
the problem posed is integrable and can, in principle, be reduced to quadratures. The 
details of the solution, however, are surprisingly complex. 

It is not difficult to show that the dynamics of N point vortices in a periodic strip is 
given by the equations 

In these equations the z, = x, + iy,, a = 1, . . . , N ,  are complex positions of a set of ‘ base 
vortices’. The T, are the circulations of these vortices. The sum is over all base vortices 
p different from vortex a, the vortex whose velocity is being computed. The overbar on 
the left-hand side indicates complex conjugation. In the limit L -+ 00 these equations 
reduce to the standard point vortex equations on the unbounded plane. The cotangent 
interaction between base vortices in (1.1) captures the mutual interactions of each base 
vortex with the periodic images of all the other base vortices. (The contribution to the 
velocity of a base vortex from its own periodic images vanishes.) 

Although the system (1.1) has been discussed in the literature for many years, its 
power in addressing problems of vortex rows has not always been appreciated and the 
literature contains several instances of discovery and re-discovery of solutions to these 
equations (cf. Aref 1995). The well-known Karman vortex street arises from N = 2 
with the conditions r1+r2 = 0. The common translation velocity of the vortices 
follows immediately from (1.1) specialized to this case. In this paper our objective is to 
discuss solutions of (1.1) for the case N = 3 under the further condition that 

rl+r2+r3 = o .  
The problem just outlined has particular theoretical importance in the theory of 

point vortex dynamics. It has been established that the point vortex equations on the 
unbounded plane are integrable for N < 3 and any values of the circulations (Grobli 
1877; Synge 1949; Novikov 1975; Aref 1979, 1983, 1985; Aref, Rott & Thomann 
1992). Integrability comes about due to the existence of certain general integrals of the 
equations of motion, in particular the linear impulse, 
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(where Q and P are the real and imaginary parts, respectively), the angular impulse, 

and the ‘Hamiltonian’ of the interacting vortices, a quantity related to the kinetic 
energy of the fluid motion induced by the presence of the vortices. The integrals (1.3) 
and (1.4) are related to the invariance of the interaction of the vortices on the 
unbounded plane under continuous spatial symmetries. Thus, Q is conserved owing to 
translational invariance of the system in the y-direction, P owing to translational 
invariance in the x-direction, and I is conserved owing to invariance of interactions 
under rotation of the coordinates. 

On the unbounded plane the solution of the three-vortex problem in the general case 
(where the sum of the circulations is not zero) is based on the integral (1.4) and the 
Hamiltonian (see the literature just cited). When the sum of the circulations is not zero, 
the integral (1.3) can in essence be eliminated by a shift of the origin of coordinates. 
For the special case of vanishing total circulation, however, the solution is most simply 
based directly on the invariance of Q and P. Details for this case (on the unbounded 
plane) have been presented by Rott (1989) and Aref (1989). In particular, it was shown 
that the problem can be ‘mapped’ onto a problem of advection of a passive particle 
by three fixed vortices. One may see this reduction as similar to the way the Kepler 
problem in celestial mechanics of two mass points orbiting one another under the 
influence of Newtonian gravitation can be mapped onto the motion of a single particle 
in the gravitational field of a fixed point mass. Professor Rott’s suggestion several years 
ago that the integrable problems of few-vortex systems with zero net circulation would 
repay more detailed exploration has been an important driving force in our 
considerations, and has shown itself to be very fruitful. 

One might worry that in the periodic strip system only Q, which follows from 
translational invariance in the y-direction, would survive as an integral. However, as 
apparently first remarked by Birkhoff & Fisher (1959), P is also conserved in this case. 
The integral I ,  of course, cannot be retained. This opens up the possibility of 
integrating the problem of three vortices in a strip under the special condition (1.2), 
since the sum of the circulations appears as the Poisson bracket between Q and P, and 
when this commutator vanishes, Q and P are integrals in involution. These formal 
points were demonstrated several years ago (Aref 1989, and unpublished numerical 
experiments by Blomberg (1984) suggested that the system (1.1) for N = 3 is chaotic 
when condition (1.2) is violated. Thus, the particular case that is relevant to the 
experiments is also ~ fortunately - precisely the integrable one. Initially, we thought 
that the solution for this case would be a straightforward extension of the work 
reported in Rott (1989) and Aref (1989). As we shall see, this is not at  all the case. 
Depending on the actual values of the strengths, the solution to this integrable 
three-body problem can become very complicated indeed. Some motions that arise 
appear to us almost counter-intuitive. However, as we shall suggest towards the end of 
this paper, counterparts of these motions, which play a significant role in the overall 
dynamics of the problem, appear to arise in the experiments of Williamson & Roshko 
(1 988). 

It may be appropriate to mention that the special case of vanishing circulation also 
plays an important role in the case of.four point vortices which is, in general, a non- 
integrable system. Eckhardt & Aref (1988) noted that on the unbounded plane the case 
N = 4, with vanishing total circulation and the additional constraint that Q = P = 0, 
is integrable. A detailed analysis was given by Eckhardt (1989) with two important 
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postscripts by Rott (1990, 1994). In fact, this case ‘maps’ onto a three-particle problem 
that is similar to the general three-vortex problem on the unbounded plane, an 
observation that we hope to elaborate on elsewhere. In the periodic strip case the 
modes observed by Williamson & Roshko (1988), in which there are four vortices per 
cycle, presumably correspond to non-integrable point vortex systems, and would 
appear to be even more complicated than the three-vortex cases treated in this paper. 

We remark that the methods pursued here may be extended to the case of three point 
vortices in a general periodic parallelogram in the plane (in which case the periodicity 
assures us that the sum of the circulations is zero). We intend to report on that case, 
which we believe is relevant to the study of two-dimensional turbulence, in a separate 
paper. 

2. Solution method - preliminary considerations 
In order to motivate later considerations, we initially follow the solution path from 

Aref (1989). We shall see soon enough where it fails us. From (1.2) and (1.3) we find 

f 2(z1 - z,) + I‘,(z, - z,) = - (Q + iP), (2.1 a) 

T,(z, - z,) - f 3(z, - z,) = Q + iP, (2.1 b) 

so that simple linear relations allow all three vortex separations to be expressed in 
terms of one, which we take as 

z ,  - z2 = <. (2.2a) 
Thus 

T,(z, - z,) = - (Q + iP) - T, 5, (2.2 b) 

T&, - z,) = - (Q + iP) + r, 5. (2.2c) 

Without loss of generality we may assume that the labels of the vortices have been 
chosen such that f ,  2 f ,  > 0, r, < 0, since two of the vortices must always have the 
same sign and the case of two negative vortices follows easily from the case of two 
positive vortices. We set 

and then have 

(2.3 a) 

(2.3 b) 

(2.3 c) 

It follows from these relations that we cover the necessary range of parameters by 
allowing y to vary between 0 and i. 

From the equations of motion, 

dz,/dt = - i{T2 C(z, - z2) + r, C(Z, - z,)}, 

dz,/dt = - i{f C(z, - z,) + I-, C(Z, - z3)},  

dz3/dt = - i{T, C(Z, - ZJ + r2 C(Z, - z,)}, 

(2.4a) 

(2.4b) 

(2.4 c) 

C(Z) = cot{;z}/2L, (2.4d) 

where the abbreviation 
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has been used, we obtain an equation for 6: 

where 

(2.5a) 

(2.5b) 

We comment briefly on the range of the real part of X. We have stressed the notion 
of ‘base vortices’ from which an entire row may be constructed by periodic 
continuation. However, the dynamic problem is invariant to a shift by an integral 
number of periods within the row of which a vortex is considered the ‘base’, i.e. 
simultaneous shifts of zi, z,, and z3 by integral multiples of L in the original setup lead 
to the same problem. In terms of X ,  (2.56),  this means that changes in its real part by 
L{r(y+i)-s(y-+)- t} ,  where r ,  s and t are integers, lead to the same problem. The 
smallest positive value that this expression can assume is ( i - y )  L. Hence, it is only 
necessary to vary the real part of X between 0 and (i- y )  L. 

The main difference between the periodic strip case and the unbounded plane is now 
apparent. For the unbounded plane we had equations of the form (2.4), and thus 
(2.5), but the function C in that case was simply C(z) = (1/2n)z-’. Hence, quantities 
such as C{X-(y+:)  6) could be rewritten in the form AC(6-B) with suitably chosen 
constants A and B. This allowed the right-hand side of the counterpart of ( 2 . 5 ~ )  (see 
(A 6) of Aref 1989) to be interpreted immediately as an advection problem for a passive 
particle in the field of three fixed vortices. For the case at hand such an interpretation 
is more elusive. 

In the next section we consider the special case y = 0 (Ti = T,). Based on insight 
derived from that case we present in 94 a general solution method for any rational 
value of y .  An interpretation of the motion in terms of an advection problem by a 
system of fixed vortices in a wider periodic strip is possible in this case. Depending on 
the width of the strip and the number of fixed vortices in it, that advection problem 
may become quite complicated. Representative examples are given in ff 5 ,  concentrating 
on the case r1:r2:r3 = 2 :  1 :( -3),  which seems to capture the essential regimes of 
motion that we have observed for other rational values of y, but that do not arise for 
y = 0. In 334 and 5 we also discuss the bifurcations of the streamline patterns produced 
by the fixed vortices as X ,  (2.5b), is varied. In 96 we explain how the reduction to an 
advection problem by fixed vortices may be obtained for an arbitrary real value of y. 
The advection problem now does not ‘fit’ into a periodic strip but involves three 
infinite rows of fixed vortices. We also comment on the issue of ‘convergence’ of a 
series of periodic advection problems corresponding to rational approximants of an 
irrational y to the infinite row case corresponding to y itself. Finally, in 97 we return 
to the results of Williamson & Roshko (1988) and argue that, indeed, a counterpart of 
one of the dominant modes of motion found in the analysis of 994 and 5 appears to 
occur in the experiments. 

3. The special case y = 0 (TI = I‘,) 
The equation to be solved in this case is 
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FIGURE 1 .  Phase space for r, : r, : l-? = 1 : 1 : ( -  2), y = 0, and X = 0. The strip width is 2L and there 
are two advecting vortices (solid dots). The four regimes of motion are labelled I-IV, the saddle points 
are A and B, and the separatrices are designated a,  /I, y and 6. 

In order to interpret this as an advection problem by fixed vortices (in a periodic strip) 
we note the identity 

2COt(23 = c o t ( ~ b } + c o t { ~ ( b - L ) } .  

Thus, (3.1) may be rewritten 

where 

c(z) = cot (#L. 

(3.3 a)  

(3.3b) 

This equation has an immediate interpretation as an advection problem for a passive 
particle in the field of four fixed vortices, two of strength - r,, two of strength 2 r3 ,  in 
a periodic strip of width 2L. The two vortices of strength - r, are located at z = 0 and 
z = L. The two vortices of strength 2 r 3  are located at +2X (mod2L). Note that the 
strengths of the fixed vortices do not sum to zero. 

A particularly simple case arises if X = 0. Then there are just two fixed, advecting 
vortices, one of strength 3 r 3  at z = 0 and one of strength -r, at z = L in the strip of 
width 2L. The pattern of particle paths (or, equivalently, streamlines) in the steady flow 
produced by these fixed vortices is shown in figure 1. All streamlines shown are 
separatrices or ‘dividing streamlines’, i.e. they connect stagnation points of the 
advection problem. There are four regimes of motion, labelled I, 11, I11 and IV in figure 
1. Here and subsequently, regimes of motion are designated by Roman numerals, 
motions along separatrices by lower-case Greek letters, and stagnation (saddle) points 
by upper-case English letters. The motion is bounded, in the sense that 151 is bounded, 
in regimes 111 and IV, unbounded in regimes I and 11. According to (2.2a) this means 
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FIGURE 2. Real-space trajectories of the three vortices corresponding to the phase-space diagram of 
figure 1 .  Base vortices are shown as solid circles, periodic images as open circles. Vortex 3 is stationary 
in all cases. Initial positions are labelled 1, 2; final positions I’, 2‘. All motions are shown for one 
period (in the case of separatrices: for the transition from saddle to saddle). The motion in 11, ,B, and 
S are obtained by interchanging vortices 1 and 2 in I, a, and 7, respectively. 

that the corresponding trajectories of the three vortices in ‘real space’ are such that 
vortices 1 and 2 stay together in regimes I11 and IV, whereas they separate in regimes 
I and 11. According to (2.2h) and ( 2 . 2 ~ )  when vortices 1 and 2 separate, all three 
vortices will separate, i.e. although they start in the same periodic strip, they will over 
time migrate farther and farther away so that these base vortices are eventually 
separated by many strips. There are, of course, periodic images in each strip, but the 
effect remains that considerable interchange or ‘mixing ’ occurs along the rows in this 
case compared to cases when the base vortices remain within one or two strips of each 
other for all time. The top three panels in figure 2 display typical trajectories of the base 
vortices for each of the four regimes in figure 1 according to the labels indicated. Note 
that in this case the condition X = 0 means z3 - z1 = - (z, - ZJ,  so (2.4 c) shows that z3 
is constant, i.e. vortex 3 remains stationary. The conventions used in figure 2 (and later 
in other trajectory plots) are that the original base vortices are indicated by solid 
circles. Their initial positions are given by the numbers 1, 2 and 3 ;  the final positions 
by l’, 2‘ (and 3’ when it moves). Motion in regime I1 looks exactly like motion in regime 
I except that the numbering of vortices 1 and 2 is interchanged (and so indicated in 
parentheses in figure 2). The bottom two panels of figure 2 correspond to the 
separatrices a, p and y ,  6 in figure 1, respectively. 

The very simple picture that emerges for X = 0 is immediately complicated when 
X + 0. Figure 3, for example, shows the result of the same construction for X = 

L( 1 + i)/S. Now we encounter all four fixed, advecting vortices (in a strip of width 2L),  
and so to the simple picture of regimes I-IV in figure 1 we must add regimes V, VI and 
VII to accommodate the two additional vortices. The dividing streamlines of the flow 
produced by the fixed vortices are as shown in figure 3. It is clear that all advected 
particle trajectories are closed in the sense that they either close on themselves or on 
their periodic image in the next strip of width 2L. Hence, all real-space motions of the 
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FIGURE 3. Phase space for r, : r, : r, = 1 : 1 : (- 2) ,  y = 0, and a ‘generic’ value of X = L( 1 + i ) / S .  The 
strip width is 2L and there are now four advecting vortices (solid dots). The regimes of motion are 
labelled I-VII, the saddle points are A-D, and the separatrices are designated by small Greek letters. 

original three vortices (except for the ‘ separatrix’ motions corresponding to the 
dividing streamlines themselves) are periodic, and the initial configuration reassembles 
itself after some time, possibly modulo a number of periodic strips, i.e. in order to 
reassemble the original configuration we may need to employ the periodic image of one 
or more base vortices. Figure 4 provides sample trajectories of motions in the various 
regimes of figure 3 as indicated by the labels. The conventions used in figure 4 are again 
that the original base vortices are indicated by solid circles. Their initial positions are 
given by the numbers, 1, 2 and 3 ;  the final positions by l’, 2’, 3‘. In the initial and final 
configurations we also join three vortices by lines to form a triangle to more clearly 
illustrate how the vortex configuration re-emerges after a period (or how a steady state 
at one end of a separatrix arises from the steady state at the other end). In some cases 
(e.g. I, I1 and a, p) the motion of periodic images is essential in order to understand 
how this re-emergence comes about. In these cases the required periodic images and 
their initial and final positions are indicated by open circles and numbering 2“, 3” for 
the final positions. The trajectories of periodic images are given by lighter lines than the 
trajectories of the base vortex trio. 

Note that in regime I (11) the re-assembly of the initial configuration arises by vortex 
1 (2) ‘teaming up’ with periodic images of vortices 2 (1) and 3 .  In the other regimes the 
vortices from one strip ‘travel together’ and re-assemble the initial configuration at 
some shifted position. The four bottom panels in figure 4 show separatrix motions as 
labelled in figure 3 .  It can be seen here that the separatrices really tell much of the story 
in the sense that the motion in any one of the regimes resembles the motion along the 
separatrices bounding that regime. For example, the motion in the panel labelled I11 
in figure 4 is a ‘mixture’ of the separatrix motions labelled y and E ,  as would be 
expected from figure 3 .  Similarly, the motion in regime I(I1) follows quite closely the 
motion corresponding to the separatrix a (p). This idea, that the general motion can 
be understood on the basis of the separatrix motions in the advection problem, will be 
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FIGURE 4. Real-space trajectories of the three vortices corresponding to the phase-space diagram of 
figure 3. Base vortices are shown as solid circles and their trajectories as heavier lines; periodic images 
are open circles and their trajectories are lighter lines. Initial positions are labelled 1, 2 ,  3; final 
positions l', 2', 3'. Final positions of required periodic images are labelled I", 2", 3". The trajectories 
are labelled according to the regimes and separatrices indicated in figure 3. All motions are shown for 
one period (in the case of separatrices: for the transition from saddle to saddle). Note that since 
vortices 1 and 2 may be interchanged, regimes and separatrices pairwise may lead to similar real-space 
trajectories. The motion in 11, IV, /I, 8, <, and 8 is obtained by interchanging vortices 1 and 2 in I, 
11, a, y ,  E,  and 7, respectively. 

utilized as we proceed. Note, however, that the motions within regimes are strictly 
periodic, whereas the separatrix motions begin and end infinitesimally close to an 
unstable steady state. Hence, the extent (in real space) of a separatrix motion as 
displayed in our figures is somewhat arbitrary, since it can be continued 'forever' both 
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I Gm I 
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FIGURE 5.  Bifurcation diagram in X-space and representative streamline patterns in the field of the 
fixed vortices. The streamline pattern corresponding to A is figure 1. The streamline pattern C is figure 
3. Streamline pattern G is reproduced in greater detail in figure 6. 

before and after the segment shown, whereas the trajectory plots within regimes are 
true, single-period motions. 

A complete discussion of the variability of a streamline pattern such as figure 3 with 
X leads us to a bifurcation analysis, the results of which are indicated in figure 5. On 
the left we show a bifurcation diagram in the X-plane, with the real part of X restricted 
to the interval from 0 to L/2 as discussed in $2. For this case, i.e. for y = 0, bifurcations 
in the streamline topology of the advection problem, such as figures 1 and 3 ,  occur only 
along the curves indicated in figure 5 (left panel). For example, point A in this 
bifurcation diagram corresponds to X = 0 and leads to figure 1 with four regimes of 
motion. If we increase both the real and imaginary parts of X ,  we arrive at point C in 
the bifurcation diagram, and we see from the small panel C in the right-hand part of 
figure 5 that the streamline pattern from figure 3 ,  with seven regimes of motion, has 
been achieved. When the real part of X is L/4, there is a range of imaginary parts of 
X for which the streamline pattern has the topology indicated in figure 5(B). This 
streamline pattern leads to six regimes of motion. As the imaginary part of X is 
increased, we eventually reach point D in the bifurcation diagram with a streamline 
pattern as shown in panel D of figure 5.  The ‘accidental degeneracy’ of saddle points 
is evident (and the three streamlines passing through the two stagnation points produce 
six sectors of opening angle 7c/3) .  Varying X along the upper curve DEF in the 
bifurcation diagram produces streamline patterns E and F. (D, E and F all have six 
regimes of motion.) Finally, for large imaginary parts of X ,  i.e. for large values of the 
impulse in the x-direction, we find streamline patterns such as G with eight regimes of 
motion. 

We have explored the nature of the motions of the original three vortices arising 
from the various regimes seen in figure 5 (B-G). The only substantial addition to what 
we saw in our discussion of figures 3 and 4 are the motions, shown in figure 6, 
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FIGURE 6. Streamline pattern G from figure 5 (top) and representative vortex trajectories 
corresponding to regimes VII and VIII (bottom). 

corresponding to the regimes from panel G in figure 5 (reproduced at the top of figure 
6) labelled VII and VIII. Sample vortex trajectories are shown at the bottom of figure 
6. We find a new type of motion, which strongly involves periodic images from adjacent 
strips. Although superficially similar to the motions in regimes I and I1 of figure 3 ,  the 
base vortices now all move in the same direction. The motions corresponding to 
regimes I-VI in figure 6 are qualitatively similar to those motions with the same Roman 
numerals discussed in figures 3 and 4. 

4. Solution method for rational y 
We may base a general approach for the case of rational y on a generalization of 

(3.2). Let us consider a periodic row of identical vortices of strength r with spacing L. 
Assume coordinates are chosen such that the vortices are at x = 0, L, 2L, . . ., etc. Let us 
now calculate the induced velocity from this row of vortices on an advected particle at 
z.  First, view the row as a single vortex placed in a strip of width L repeated infinitely 
in both directions. Then the (complex conjugate of the) velocity in question is simply 
(T/2Li) cot (nz/L). Next, view the row as consisting of N identical vortices placed at 
x = 0, L, 2L, .. ., ( N -  l )L  in a periodic strip of width NL.  Then the velocity is given as 
a sum of N cot terms. Equating the two expressions we have 

1 -cot 2Li (z - z  ) =- 2 N L i ~ , c o t { ? k ( z - n L )  ' 
r Iv-1 r 

(4.1 a) 
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or 

Introducing the notation 

(4.1 b) 

(such that C(z)  in (2 .4d)  corresponds to r = 1 and C(z)  in (3.3 b) corresponds to r = 2)  
we may write this as 

N - 1  

c,(z) = c c,(z-nL). (4.3) 

rc,(rz) = c,(z). (4.4) 

n=n 

Note also that 

We now return to ( 2 . 5 ~ )  and assume that y is a rational number written in lowest 
terms a s p l q ,  wherep and q are integers with q > 2p (since y < i). Using (4.3) and (4.4) 
we rewrite the second term on the right-hand side of ( 2 . 5 ~ )  as follows: 

c{x-(y+;)lJ = -c, 5 - X - n L  
n=n 

Similarly, 

(4.5b) 

(4.5 c)  

Thus, all three terms on the right-hand side of (2.5a) have been rewritten in terms of 
velocities induced by a system of fixed vortices of various strengths in a periodic strip 
of width 2qL. The total number of fixed vortices is q+2p+(q--p)+2q = 4q. The 
differential equation for 5, which now reads 

may be interpreted as a problem of passive advection of a particle in the velocity field 
produced by these fixed vortices. The special case considered in $3  corresponds to q = 
1 (and p = 0). 

For a given y = p / q  we are thus instructed by (4.6) to consider the advection of a 
particle by a system of fixed vortices in a periodic strip of width 2qL. There are three 
families of vortices. At the 2q locations 0, L, .. ., (2q- 1 )  L we find identical vortices of 
circulation -T3. The locations of the two other families of vortices depend on the 
value of the impulse in the original problem, here represented by the quantity X .  The 
q+2pvorticeslocated at 2q(X+nL)/(q+2p) = - ( I ' J r J ( X + n L ) ,  n = 1, ...,q+ 2p- 1 
all have circulation 2qI',/(q + 2p) = - Ti/T, ; the q - 2p vortices at 
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2q( - X +  nL)/(q - 2p) = - (T3/T2)( - X +  nL),  n = 1, . . . , q - 2p - 1 all have circulation 
2qT3/(q-2p) = -Ti/T,. (The reader of Rott 1989 and Aref 1989 should recognize 
these circulation values!) Note that although the sum of the original three vortex 
circulations vanishes, the net strength of the fixed vortices in the advection problem for 
{ is 2qT3 (+ 0). When Xis real all three families of vortices are situated on the real axis 
and, depending on the values of p and q, vortices from the different families may 
coincide (in which case a single vortex is placed with a circulation equal to the sum of 
the circulations of the coinciding vortices). When X has a non-vanishing imaginary 
part, the three families of vortices are always distinct: one family remains on the real 
axis, the second will be situated above it and the third below it. Changes in the topology 
of the streamlines governing the advection problem lead to a bifurcation problem with 
X as the bifurcation parameter. We have seen an example of this in figure 5 ,  and we 
will show and discuss another, more complicated example in figure 8. 

The motion of a passively advected particle in the flow field induced by these three 
rows of fixed vortices can be used, via ( 2 . 2 ~ ~ ) ~  to construct and classify the trajectories 
of the original three vortices in the periodic strip. For brevity and clarity we shall refer 
to the trajectories of the original vortices as the vortex motion in ‘real space’. We shall 
refer to the advection problem as the motion in ‘phase space’. 

In general we expect the phase space to be a periodic strip of width 2qL. From the 
considerations just given we may, however, derive sharper results. Without loss of 
generality consider a shift of the base vortices in which base vortex 1 is shifted by rL,  
base vortex 2 by s L  and base vortex 3 is not shifted at all. This changes < by ( r -s )  L. 
In order to be considering an equivalent problem, we must assure that X is not 
changed, i.e. r and s must satisfy r (y+i)  = s(y- i ) .  With y = p / q  this mean 2p(s-r) 
= q(s+ r ) .  We are only interested in q > 2. Consider first the case where q is odd. Since 

p and q are relatively prime, this relation tells us that s + r must be a multiple of p and 
s - r must be a multiple of q, i.e. there must exist an integer k such that s- r = kq, s + r 
= 2kp. Solving for r and s we have 2s = k(2p+q),  2r = k(2p-q).  Since q is odd, it 
follows from these that k must be even. The smallest shift in < that leads to an 
equivalent problem thus occurs for k = 2, and is 2qL. Thus, the phase space will be 
periodic with period 2qL for odd q and we should not expect a shorter period. For even 
q the situation is different. We set q = 2u and note that p must now be odd. The 
equation 2p(s - r )  = q(s + r )  becomes p(s  - r )  = u(s + r ) ,  where u and p are relatively 
prime. There then exists a k such that s - r  = ku, s+r = kp ,  and 2s = k (p+u) ,  2r = 

k (p -u ) .  Now, if u is odd, p + u  is even, and k = 1 gives the smallest value of s-r ,  
namely (q /2 )  L. On the other hand, if u is even, k must also be even, the smallest value 
of s - r  occurs for k = 2, and is qL. Thus, for even q the phase space will already be 
periodic with period qL if q is divisible by 4, and with period (q /2 )  L if q is not divisible 
by 4. The latter period is four times shorter than the general result 2qL would have led 
us to believe. The case ( p ,  q) = (1,6), corresponding to circulations r, : r, : T, = 

2 :  1 :( - 3 ) ,  is the simplest example of a phase space with such a shorter period. This 
case will be studied in detail in $ 5 .  

It is not difficult to verify, as we have already remarked, that the coincidence of < 
with one of the vortices in the phase space corresponds to the coincidence of two of the 
original vortices 1, 2, and 3 in real space (modulo L). For example, if < = 

2q(X+ nL) / (q  + 2p), then z2  - z3  = X -  (y  +i) < = -nL. This is, of course, not allowed. 
However, it is useful to note that {-motion in the vicinity of a phase-space vortex in the 
row with positions 2q(X+ nL) / (q  + 2p) corresponds to real-space motion in which 
vortices 2 and 3 ‘move as a pair’. Similarly, {-motion in the vicinity of a phase-space 
vortex in the row with positions n L  corresponds to real-space motion in which vortices 
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1 and 2 ‘move as a pair’, and c-motion in the vicinity of a vortex in the row with 
positions 2q( - X +  nL)/(q - 2p) corresponds to real-space motion in which vortices 1 
and 3 ‘move as a pair’. We should recall that the notion of ‘moving as a pair’ can lead 
to rather different patterns of motion depending on both the relative sign and 
magnitude of the circulations of the two vortices in the pair. 

5. Representative examples 
Among the simplest rational values of y to consider are @, q)  = (1,3), (1,5) and (2, 

5)  corresponding to the vortex strength ratios r, : r, : r, = 5 : 1 : (- 6); 7 : 3 : (- 10); and 
9 : 1 (- lo), respectively. In all these cases q is odd and the phase-space periodic strip is 
of width 2qL. The phase-space diagram for the case ( p ,  q)  = (1,6), where q is even but 
not divisible by 4, fits in a strip of width 3L. The corresponding vortex strengths, 
r, : r, : r, = 2: 1 : (- 3), probably give the simplest set to consider after the case y = 0 
of $3. On one hand, the phase-space diagram for this case reveals regimes of motion 
that are not present for y = 0. On the other hand, it seems to capture the phase-space 
structures that appear for other rational values of y that we have explored. Hence, we 
begin our study of specific examples by an analysis of the motion in the case ( p ,  q)  = 
(1,6), and then briefly show how the regimes of motion found for this case have 
counterparts in more complex motions corresponding to ( p ,  q)  = (1,5) and (2,5).  We 
have considered other examples as well, such as ( p ,  q) = (1,3), (1,7), (2 ,7) ,  and so on, 
but we have not found regimes of motion qualitatively different from the examples 
selected for presentation below. 

Figure 7 shows phase-space streamlines for ( p ,  q)  = (1,6), and X = L(1+3i)/12. All 
streamlines shown are separatrices or ‘dividing streamlines’, i.e. they connect 
stagnation points of the phase-space advection problem, in a strip of width 3L. The 
chosen value of X is generic in the sense that the streamline pattern does not display 
any symmetries that may arise for other, more carefully chosen, values of X .  The 
bifurcation diagram in X-space, i.e. the analogue for this problem of figure 5 ,  is quite 
complicated. We show it in the left panel of figure 8. Four representative streamline 
patterns are shown in panels A, B, D and E in the right-hand portion of figure 8. They 
correspond to the X-values indicated as A, B, D and E in the bifurcation diagram. Of 
these four, A and D are on curves of the bifurcation diagram and thus have some 
‘degeneracy’ or symmetry, in the sense that two or more saddle points in the phase- 
space streamline pattern are connected at the corresponding values of X .  The X-value 
marked C in figure 8 leads to the streamline pattern in figure 7 that will be analysed 
in detail. 

It is important to note that the approximate dipole structures seen in figures 7 and 8, 
e.g. in figure 7 the one with regions labelled IV and VIII and saddle points labelled 
D and E, are essential features of these patterns, and are the main new feature (arising 
from y + 0) relative to figures 1 and 3. At first sight one might think it an error that 
there is not a single separatrix curve connecting D to E. However, this kind of 
connection does not arise, and if one traces the separatrices (which is not entirely 
simple since several of them are very close), one finds that both D and E are connected 
up to themselves by two loops, i.e. the pattern of separatrices is topologically like a 
‘figure 8’ with D or E at the cross. These dipole-like structures around a pair of fixed 
vortices are quite different from the more familiar connected configurations that arise 
in such problems as the ‘atmosphere’ of a translating vortex pair. The streamline 
topologies in figures 7 and 8 are, in general, of this ‘disconnected’ type, and the 
bifurcation diagram in figure 8 arises precisely from a careful tracing of when saddle 
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 FIGURE^. Phasespacefor f , : f , : f ,  = 2:1:(-3),y = 1/6,anda‘generic’valueofX= L(1+3i)/12. 
The strip width is 3L and there are 6 advecting vortices (solid dots). The regimes of motion are 
labelled I-XIII, the saddle points are A-F, and the separatrices are designated by small Greek letters. 
Note the lack of connection between saddle points such as D and E that ‘belong’ to the same dipole- 
like structure. Note also the very thin regimes of motion, such as IX, XI and XII. 
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FIGURE 8. Bifurcation diagram in X-space (left) for the case of f,: f,: f, = 2 : 1 : (- 3), y = 1 /6. The 
value of X indicated as C corresponds to the streamline pattern in figure 7 .  The streamline patterns 
corresponding to values of X indicated as A, B, D and E are shown at right. 



16 H. Aref and M .  A .  Stremler 

L 

111 V I  1 2 1  1' 2' /@-& I IV i1&t I iv 
2' 3' 

I 3 '  

I I I I 

3 

I I 
FIGURE 9. For caption see facing page. 
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points connect. In general, if one computes to high accuracy the values of the 
streamfunction at the two saddle points (such as D and E in figure 7) on either side of 
an apparent dipole, one finds them to differ by a few percent. On the other hand, at 
a bifurcation the values of the streamfunction at two apparently connected saddle 
points agree to all significant digits (and this is how the bifurcation diagram is 
determined). The existence of these ‘disconnected ’ dipole streamline patterns leads to 
regimes of motion that reside in very thin strips of phase space (e.g. the regions marked 
IX, XI, and XI1 in figure 7) yet are clearly identifiable in the real-space dynamics of the 
vortices. A diagram such as figure 7 thus has as many as 13 distinct regimes of motion! 
We have once again labelled these by Roman numerals. In figure 9 we show 
representative real-space vortex trajectories (of the base vortices) corresponding to 
these various regimes. The richness of some of these motions, all of which are periodic, 
is remarkable. Note in particular the complexity of the motions associated with the 
aforementioned ‘thin strips’ in phase space (see, for example, the trajectory plot 
labelled XI in figure 9). 

The general nature of each of the trajectory plots in figure 9 can be understood by 
reference to figure 7 and use of the formulae (2 .2~-c) .  We have already commented on 
the nature of real-space trajectories when 5 orbits one of the fixed phase-space vortices. 
Examples are shown in panels 111, IV, V, VI, VII, and VIII of figure 9. More 
interesting, and certainly more pervasive in the phase-space plot of figure 7, are the 
regimes that pass by several of the fixed vortices. Trajectory examples are shown in 
panels I, 11, IX, X, XI, XI1 and XI11 of figure 9. Both bounded and unbounded motions 
occur in the sense that the original base vortices stay together or separate indefinitely. 
Bounded motion occurs in regimes IX, X, XI and XII; unbounded motion in regimes 
I, I1 and XIII. Clearly, the number of periodic strips that separate the final and initial 
positions of the base vortices, and whether the re-emergence of the original pattern 
involves periodic image vortices or not, has significant consequences for such 
processes as mixing. Some of the trajectories (e.g. XI) are quite complex with the 
vortices moving through very complicated turns, some of them very sharp. We stress 
that all motions are periodic, and that the complexity seen in figure 9, e.g. that the 
vortices travel several periodic strip widths before rearranging into the original pattern, 
is all happening in periodic motions. We also stress the appearance and prevalence of 
motions such as I and 11, since we believe them to be among the ones observed 
experimentally, as we discuss in 57. 

The separatrix motions that connect different steady-state ‘vortex streets’ clearly 
provide a key to understanding the entire diagram. We have calculated the real-space 
motion corresponding to the various separtrices in figure 7, and these are presented in 
figure 10. Knowing the separatrix motions in real space and knowing the phase space 
it is possible to develop a qualitative picture of any real-space motion by piecing 
together the appropriate separatrix motions. Thus, a trajectory such as XI in figure 9 
is clearly made up of pieces that resemble separatrices K and ,u, i.e. the two ‘loops’ that 
share saddle point D in figure 7. 

An interesting corollary of all these developments is that there are no stable steady 
configurations. Steady configurations of the three vortices in real space correspond to 

FIGURE 9. Real-space trajectories of the three vortices corresponding to regimes I-XI11 in the phase- 
space diagram of figure 7. Base vortices are shown as solid circles and their trajectories as heavier 
lines ; periodic images are open circles and their trajectories are lighter lines. The trajectories are 
labelled according to the regimes indicated in figure 7. Initial positions are labelled 1, 2, 3;  final 
positions l’, 2’, 3’. Final positions of required periodic images are labelled l”, 2”, 3”. All motions are 
shown for one period. 
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FIGURE 10. For caption see facing page. 
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FIGURE 1 1. Phase space for r, : r, : r, = 7 :  3 : ( -  lo), y = 1 /5, and X = L(3 + 10i)/40. The strip width 
is 1OL and there are 20 advecting vortices (solid dots). Two separatrices are labelled (cf. figure 12). 
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FIGURE 12. Real-space trajectories of the three vortices corresponding to the two separatrices a and 
,8 in the phase-space diagram of figure 11. Notation as in figure 9. All motions are shown for the 
transition from saddle to saddle. 

stagnation points of the advecting flow in phase space. These come in two varieties: 
there are the locations of the advecting vortices, and there are a number of hyperbolic 
points in the flow field away from the vortices. There cannot be elliptic points in the 
flow field since it is a potential flow induced by a fixed set of point vortices. Clearly, 
the real-space state corresponding to any hyperbolic point is not stable, since there 
exist perturbations that will amplify exponentially. And, as we have already seen, the 
advecting point vortices correspond to real-space states in which two vortices are at the 
same location, i.e. to unavailable states of infinite energy. Thus, the reduction to an 
advection problem demonstrates immediately that there can be no stable steady 
configurations of the original vortices. This statement goes well beyond linear stability 
theory. We suggest that this mode of analysis can be applied also to the conventional 
vortex street problem and thus provide an alternative, geometrical route to the full 
nonlinear stability analysis of that configuration, which is known to be very demanding 
analytically (Kochin, Kibel & Roze 1964). 

Phase-space plots and corresponding trajectories are similar for other cases that we 
have explored. By way of example, figure 11 shows the {-plane phase space for ( p ,  q)  
= (1,5) and X = L(3 + 10i)/40. Regimes similar to those observed in figure 7 will be 
seen, although there are more of them. The general nature of trajectories, both in phase 

FIGURE 10. Real-space trajectories of the three vortices corresponding to separatrices in the phase- 
space diagram of figure 7. Notation as in figure 9. The trajectories correspond and are labelled 
according to the separatrices indicated in figure 7. All motions are shown for the transition from 
saddle to saddle. 
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FIGURE 13. PhasespaceforT,:T,:T, = 9:1:(-lO),y= 2/5,andX=L(l+lOi)/40.Thestripwidth 
is 10L and there are 20 advecting vortices (solid dots). Three separatrices are labelled (cf. figure 14). 

space and in real space, is again similar to what we have seen in figures 7 and 9. The 
general nature of the separatrices is similar as well. Figure 12 shows two separatrices 
(labelled 01 and p in figure 11). The case q = 5 is interesting because it is the smallest 
denominator for which two values of the numerator, p ,  are allowed. Thus, in figure 13 
we show the <-plane phase space for ( p ,  q)  = (2 ,5 )  and X = L(1 + 10i)/40. The main 
difference between figures 1 1 and 13 is that the lower row of advecting vortices contains 
just one vortex in the latter case but three in the former in accordance with the general 
theory given in $4. Figure 14 shows three real-space trajectories of the three vortices 
corresponding to the separatrices labelled a, p and y in figure 13. Again the spatial 
complexity of the motions and the large number of periodic strips (10) over which these 
periodic motions extend have already emerged in our discussion of figures 9 and 12. 
The ‘open dipoles’ in the <-plane clearly have a major role to play in producing this 
dynamics. 

Since we know the number of poles in a phase-space strip, it is possible to use simple 
ideas from the theory of analytic functions to count the number of saddle points (and 
hence states of steady translation) for a given rational y, modulo ‘accidental’ 
degeneracies due to symmetries. For a general value of the linear impulse these 
vortex streets will translate with different velocities and will not be dynamically 
connected. There will be no separatrix joining them, i.e. the saddle points in the phase- 
space diagram will be homoclinic rather than heteroclinic. The two separatrices 
belonging to a given saddle will thus, generically, consist of a ‘short branch’ that loops 
a nearby vortex, and a ‘long branch’ that crosses the periodic boundary of the strip in 
the phase-space diagram. The short branch leads to relatively simple motions in which 
two vortices move as a pair. The long branch leads to the motions that extend over 
several strip widths as illustrated in figures 10, 12 and 14. 

Based on explorations of various cases using the methods explained above we believe 
that the general, qualitative nature of the motion has been elucidated in all cases of 
rational y. All motions (except for the separatrix motions) are periodic, and it always 
appears possible to find motions in which two of the base vortices will become separated 
by 241 (or q or 4 /2 )  periodic strip widths during one period. 
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FIGURE 14. Real-space trajectories of the three vortices corresponding to the three separatrices a, /J' 
and y in the phase-space diagram of figure 13. Notation as in figure 9. All motions are shown for the 
transition from saddle to saddle. 

6. The case of irrational y 
In general y will, of course, be irrational. The procedure given in $4 for rational y 

does not immediately generalize and, in fact, seems to suffer a convergence problem if 
one considers a sequence of rational approximants, pi/qi ,  approaching the irrational y 
ever more closely. For each of these the construction in 94 may be worked out. The 
problem is that the denominators in the series of rational approximants, i.e. the qi, may 
fluctuate considerably, so that one is led to consider successive strips and vortex 
patterns that do not seem to be related or to be converging to a final result in any 
simple way. 

The results obtained in $4 suggest that there is a mapping onto an advection problem 
for a passive particle in the field of a system of fixed vortices that belong to one of three 
infinite families. First, there should be a set of vortices of circulation -T3 at regularly 
spaced locations 0, f L, . . . . Secondly there should be a set of vortices of circulation 
T'J(y + i) = - T:/Tl located at ( X +  n L ) / ( y  + i), n = 0, f 1, . . . . Finally, there should 
be a family of vortices of circulation - T 3 / ( y  -i) = - T:/T, at ( X +  n L ) / ( y  - i), 
y2 = 0, f 1, . . . . Whereas for rational y these three rows are a repeat of a basic pattern 
in a strip with a width that is a multiple of the given strip width, for irrational y no such 
strip exists. The incommensurability of the spacings in the three rows means that an 
infinite system is required. 

The same result is obtained analytically (and thus provides a different and maybe 
even simpler approach to the results in $4) if one works directly with the infinite series 
describing the mutual vortex interactions rather than summing them into cotangents 
as we did above. Within each series one has terms of the form (zl-(z2+nL))-l  to 
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account for the influence of base vortex 2 and its periodic images on base vortex 1. 
There is an infinite sum on integers n for each such term. Within the sums, assuming 
convergence is assured, the scalings in (2.2) can now be shifted from denominator to 
numerator, and there can be absorbed in a rescaling of the vortex strength precisely as 
in the analysis of three-vortex motion on the unbounded plane (Aref 1989). The end 
result is exactly as stated in the preceding paragraph. 

The phase-plane streamline pattern of the infinite system of fixed vortices is quite 
complex. We have already seen in the case of rational y that the dipole-like structures 
around two close vortices of opposite sign usually are not closed. In the case of 
irrational y it appears furthermore that, in general, no two dipoles will be connected. 
Hence, there will be an infinity of regimes, and since the return of a phase-space 
trajectory through a periodic boundary is precluded, only the <-motions confined to the 
vicinity of a single vortex will be bounded and periodic. Hence, most of the real-space 
motions will resemble the trajectories in figures 12 and 14, but will not be periodic (with 
or without the assistance of periodic images). Only motions for which the initial 
configuration has two of the vortices sufficiently close so that they ‘move as a pair’ will 
display periodicity. 

7. Comparison with experiments by Williamson & Roshko 
In order to compare the solutions obtained for a point vortex model with 

experimental results several problems must be addressed. Some of these have been 
known for many years since the well-known stability theory of conventional ‘two- 
vortices-per-period’ vortex streets was first proposed by von Karma, (see, for example, 
Lamb 1932, 5 156). First, in addition to the mutual interaction of the vortices as 
captured in the model treated here, a real wake has a mean flow that advects the 
vortices downstream. One might attempt to include that flow by adding the potential 
flow about a cylinder to the mutual interactions of the vortices, but in the present case 
the oscillation of the cylinder introduces additional complications. Even ignoring the 
oscillations, downstream variation of the mean flow implies that the periodic strip 
width used in the temporal model problem should be variable when the results are 
translated to the spatial problem. Second, the real wake is semi-infinite rather than 
doubly infinite as assumed in the point vortex model. Even ignoring the mean flow, or 
assuming it to be simply a constant advecting velocity, the periodicity assumption can 
only begin to be valid as one travels some distance downstream along the wake. 
Unfortunately, viscous effects (also ignored) have then had time to act, and the 
location, concentration and two-dimensionality of the vortices in the wake can be 
called into question. Finally, the precise values of the circulations is typically not 
known in the experiment, although it is reasonable to assume that the total circulation 
of all vortices shed during a full cycle is zero. It follows from all these caveats that any 
comparison of our model results with experiments will be quite qualitative, and while 
the model results clearly can stand on their own merits, we feel that the modelling 
attempt to be undertaken in this section does increase the understanding of the 
experimental observations and suggests new experiments on the wake of an oscillating 
cylinder. 

We decided to attempt a comparison of our model problem solutions with the 
experimental photographs of Williamson & Roshko (1988). Professors Roshko and 
Williamson have both kindly sent us original photos so that we might have as clear a 
record as possible for this task. Figure 15 summarizes our attempts at fitting one of our 
solutions to the experimental photograph appearing as figure 17(c) in Williamson & 
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FIGURE 15. Comparison of flow visualization of the wake of an oscillating cylinder (Roshko & 
Williamson 1988) and point vortex model solutions. (a) Reproduction of a flow visualization. (b) 
Locations of vortex cores as determined from the photograph; note that for the fifth triple 
downstream we could not identify one of the vortices. (c) A ‘best fit’ analytical solution using the 
theory presented. 

Roshko (1988). Panel (a) of figure 15 simply reproduces the experimental photograph. 
In panel (b) we have plotted the positions of the vortices as measured from the 
photograph. The triangles connect those vortices that appear to belong to the same 
shedding cycle. Panel (c) represents our attempt to reproduce the vortex motions of the 
experiment using the point vortex model. Here the triangles connect a set of ‘base 
vortices’, in the sense of the preceding discussion, at  different instants of time. 

In the previous sections, the model problem dealt only with the motion of point 
vortices in otherwise quiescent fluid. However, the experimental photo in figure 15(a) 
was produced by towing a transversely oscillating cylinder through water, with three 
vortices being shed for each cycle. We neglect any effect of the cylinder on the potential 
flow downstream, but to compare with experiment we need our coordinate system to 
translate with the cylinder. That is, the velocity of a vortex must now be due to its 
interaction with the other vortices plus an advection by a free-stream velocity equal 
and opposite to the cylinder translation velocity. Now, in order to produce the 
appropriate picture, we need to specify the translation velocity of the cylinder, the 
width of the periodic strip to be used for generating our model solution, the vortex 
strengths, and the initial vortex locations. We now mention how we chose these various 
parameters. The translation velocity and strip width can be determined from the 
relevant dimensionless parameters Re and L I D ,  where the Reynolds number Re is 
based on the cylinder’s translation velocity U and diameter D,  and L is the wavelength 
of the resulting cylinder motion. Williamson and Roshko (private communication) 
report D = 1 in., Re = 275, and L I D  = 6.0. The periodic strip width is taken as the 
horizontal distance that the cylinder travels in one cycle, i.e. 6 0 .  We approximate the 
vortex strengths by using the empirical relationship K / V  = A (see Birkhoff & 
Zarantonello 1957), where U is the free-stream velocity and K is the product of the 
shedding frequency and the circulation shed from one side of the cylinder. We take 
A = 0.32 (Koopman 1967), which was given for a stationary cylinder, but we use it here, 
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nevertheless, as an approximation. Owing to viscous effects one expects that about 
two-thirds of the circulation shed from one side of the cylinder ends up as the 
circulation associated with a shed vortex. The bottom-most vortex in each triangle (the 
only vortex shed from the bottom of the cylinder in one cycle) is thus assigned a 
positive circulation based on this empirical result. The value of the other two vortex 
strengths is now determined by y, which is the only free parameter that we can use in 
an attempt to match our results to experiment. For figure 15(c) we have used y = i, 
with the bottom vortex considered as vortex 2, i.e. the vortex strengths are taken to be 
in proportion : r, : T, = 3 : 1 : (-4). Finally, the initial vortex positions are taken as 
those in the first triangle on the left in figure 15(b). We now integrate numerically in 
time through one full cycle of the cylinder oscillation, record the vortex locations, 
integrate through another cycle, again record the vortex locations, and so on to create 
the picture in figure 15(c). Note that we are using the doubly periodic solutions 
discussed previously - no attempt has been made to include image vortices in the 
cylinder, or to account for a wake flow of any kind. 

It is difficult to claim too much for the comparison presented in figure 15. However, 
we do believe that the following conclusions are merited: (i) The relative motion of 
three vortices shed during a cycle in the wake of an oscillating cylinder resemble the 
‘unbounded’ motions for the point vortex model problem in the sense that the base 
vortices separate ever further as the motion evolves, i.e. downstream distance between 
vortices shed in the same cycle grows in time; the model problem explains the existence 
and likelihood of this type of motion. (ii) The full solution of the model problem 
suggests that there are several other regimes of motion, counterparts of which have not 
so far been seen in the experiments; the model shows where in the ( y , X )  parameter 
space one might expect to find these motions, but it cannot, of course, say anything 
about how to oscillate the cylinder in order to produce appropriate initial conditions 
for the vortices. (iii) The full set of solutions to the point vortex problem clearly shows 
that the amount of mixing along the wake can be varied considerably depending on 
how the vortices are positioned immediately after one shedding cycle; this observation 
suggests that considerable control can be exercised over mixing in the wake of an 
oscillating cylinder by judicious choice of shedding frequency, amplitude and 
oscillation direction. 

It would clearly be a very interesting and worthwhile step to establish additional 
correspondence between experimental parameters that govern three-vortex-per-cycle 
shedding patterns and the regimes of motion brought to light by the present analysis. 
Very sensitive dependence of wake evolution on shedding conditions may be observable 
close to conditions for which the ratio of two vortex strengths is an irrational number 
that is hard to approximate by rationals, such as the golden mean. However, the 
motion is always integrable regardless of the value of y .  

A preliminary report on this work was presented at the annual meeting of the APS 
Division of Fluid Dynamics in Atlanta, GA, November 1994 (Stremler & Aref 1994). 
The support of NSF grant CTS-9311545 is gratefully acknowledged. M.S. also 
acknowledges the support of an ONR Fellowship. 
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